Последние
Математика — это просто. Приходите на занятия и убедитесь в этом сами: http://www.berdov.com
Однородные уравнения всегда стояли особняком в школьной программе математики. Шутка ли: на них спотыкаются даже многие учителя, не говоря уже об учениках!
Сегодня мы рассмотрим сразу три однородных тригонометрических уравнения, на примере которых изучим общий алгоритм решения, состоящий всего из двух шагов.:)
http://www.berdov.com/docs/tri....gonometriya/odnorodn
Проще всего решить однородное тригонометрическое уравнение, разделив обе его части на косинус. Таким образом, задача сведется к уравнению относительно тангенса.
Однако при этом нужно проверить: не является ли нулевое значение косинуса одним из ответов в данном уравнении. И если является — вынести косинус за скобку.
Видео урок математика ГИА 10.Решение задач онлайн.
Подписывайтесь, чтобы ничего не пропустить:
http://www.youtube.com/user/pymathru
сайт: http://pymath.ru
группа вконтакте: http://vk.com/pymathru
С Наилучшими пожеланиями ваш Балакирев Никита.
И помните только знания приведут вас к успеху, удачи.
Знания Успех.канал pymathru.
Видео урок математика ГИА 11.Решение задач онлайн.
Видео урок математика ГИА 10.Решение задач онлайн.
https://www.youtube.com/watch?v=dV_63E9b-hE
Подписывайтесь, чтобы ничего не пропустить:
http://www.youtube.com/user/pymathru
сайт: http://pymath.ru
группа вконтакте: http://vk.com/pymathru
С Наилучшими пожеланиями ваш Балакирев Никита.
И помните только знания приведут вас к успеху, удачи.
Знания Успех.канал pymathru.
Видео урок математика ГИА 4.Решение задач онлайн.
Видео урок математика ГИА 11.Решение задач онлайн.
https://www.youtube.com/watch?v=ha8RCbSZvUw
Видео урок математика ГИА 10.Решение задач онлайн.
https://www.youtube.com/watch?v=dV_63E9b-hE
Подписывайтесь, чтобы ничего не пропустить:
http://www.youtube.com/user/pymathru
сайт: http://pymath.ru
группа вконтакте: http://vk.com/pymathru
С Наилучшими пожеланиями ваш Балакирев Никита.
И помните только знания приведут вас к успеху, удачи.
Знания Успех.канал pymathru.
Ключевые слова: видео подготовка к гиа, видеоуроки гиа, репетитор гиа 2013, видео курсы гиа, видео уроки по математике, видео репетитор гиа по математике, уроки гиа, бесплатные видео уроки по математике, видео лекции по математике, обучение математике, решение задач гиа математика видео, занятие по математике, задачи по математике, видеоуроки по алгебре, видеоуроки гиа, гиа онлайн, гиа видео, сдать гиа,
5 класс математика. Выполните действие. Ч1.
Задание взято из задачника Виленкина.
Знания Успех.канал pymathru. Удачи вам на экзаменах от Балакирева Никиты. Учитесь хорошо.
Подписывайтесь, чтобы ничего не пропустить:
http://www.youtube.com/user/pymathru
сайт: http://pymath.ru
группа вконтакте: http://vk.com/pymathru
5 класс. математика. сумма двузначных чисел. Ч2.
https://www.youtube.com/watch?v=XOAhU57AxDM
С Наилучшими пожеланиями ваш Балакирев Никита.
И помните только знания приведут вас к успеху, удачи.
5 класс математика. Всадник и мотоциклист. Ч3
https://www.youtube.com/watch?v=cHFsDjOdzbM
Ключевые слова:
"математика 5 класс" "гдз 5 класс" "решебник 5 класс" "виленкин 5 класс" "математика 5 класс виленкин" "ответы 5 класс" "уроки 5 класса" "гдз +по математике 5 класс" "решебник +по математике 5 класс" "темы 5 класса" "рабочая тетрадь 5 класс" "5 класс учебники" "5 6 класс" "гдз виленкин 5 класс" "виленкин математика 5 класс гдз" "скачать 5 класс" "презентация 5 класс" "домашние 5 класс" "виленкин 5 класс решебник"
5 класс. математика. сумма двузначных числа. Ч2.
Задание взято из задачника Виленкина.
Знания Успех.канал pymathru. Удачи вам на экзаменах от Балакирева Никиты. Учитесь хорошо.
Подписывайтесь, чтобы ничего не пропустить:
http://www.youtube.com/user/pymathru
сайт: http://pymath.ru
группа вконтакте: http://vk.com/pymathru
С Наилучшими пожеланиями ваш Балакирев Никита.
И помните только знания приведут вас к успеху, удачи.
5 класс.математика. Выполните действие. Ч1.
https://www.youtube.com/watch?v=e-3V746RPVs
5 класс математика. Всадник и мотоциклист. Ч3
https://www.youtube.com/watch?v=cHFsDjOdzbM
Ключевые слова:
"математика 5 класс" "гдз 5 класс" "решебник 5 класс" "виленкин 5 класс" "математика 5 класс виленкин" "ответы 5 класс" "уроки 5 класса" "гдз +по математике 5 класс" "решебник +по математике 5 класс" "темы 5 класса" "рабочая тетрадь 5 класс" "5 класс учебники" "5 6 класс" "гдз виленкин 5 класс" "виленкин математика 5 класс гдз" "скачать 5 класс" "презентация 5 класс" "домашние 5 класс" "виленкин 5 класс решебник"
5 класс математика. Всадник и мотоциклист. Ч3
Подписывайтесь, чтобы ничего не пропустить:
http://www.youtube.com/user/pymathru
сайт: http://pymath.ru
группа вконтакте: http://vk.com/pymathru
5 класс математика. Всадник и мотоциклист. Ч3
https://www.youtube.com/watch?v=cHFsDjOdzbM
5 класс. математика. сумма двузначных чисел. Ч2.
https://www.youtube.com/watch?v=XOAhU57AxDM
С Наилучшими пожеланиями ваш Балакирев Никита.
И помните только знания приведут вас к успеху, удачи.
Ключевые слова:
"математика 5 класс" "гдз 5 класс" "решебник 5 класс" "виленкин 5 класс" "математика 5 класс виленкин" "ответы 5 класс" "уроки 5 класса" "гдз +по математике 5 класс" "решебник +по математике 5 класс" "темы 5 класса" "рабочая тетрадь 5 класс" "5 класс учебники" "5 6 класс" "гдз виленкин 5 класс" "виленкин математика 5 класс гдз" "скачать 5 класс" "презентация 5 класс" "домашние 5 класс" "виленкин 5 класс решебник"
Лакатос, ученик Поппера, называл свою концепцию «усовершенствованным фальсификационизмом». Он ввёл понятие исследовательской программы, которое позволило более реалистично описать историю науки.
Только последовательность теорий, а не отдельную теорию можно классифицировать как научную/ненаучную. Ряд теорий представляет собой исследовательскую программу. Принадлежность к данной «исследовательской программе» определяется сохранением в каждой новой теории метафизических предложений, образующих твердое ядро научно-исследовательской программы. Твердое ядро неизменно, оно не приходит в сопоставление с опытом непосредственно, это обеспечивает защитный пояс вспомогательных гипотез. При появлении фальсифицирующего факта ядро сохраняется, а защитный пояс меняется.
По Попперу, при появлении фальсифицирующего примера теория должна быть отвергнута. Согласно Лакатосу, наивный (попперовский) фальсификационизм не верен: теория держится до тех пор пока проблематичные факты могут быть объяснены путем изменения защитного пояса, то есть добавлением вспомогательных гипотез. В концепции же Лакатоса рассматривается не отдельная теория, а их последовательность. Смена теории называется сдвигом программы. Если смена теории приводит к открытию новых фактов, то сдвиг программы прогрессивный. Если сдвиг не добавляет эмпирического содержания, он называется регрессивный. Подлинно научным является прогрессивный сдвиг исследовательской программы, который обеспечивает знание новых фактов.
Различают:
- «Твердое ядро» программы, которое сохраняется от одной теории данной программы к другой;
- «Защитный пояс» , который состоит из нескольких вспомогательных гипотез, который может частично разрушаться.
Только тогда, когда будет будет разрушено «твердое ядро» программы будет переход от одной НИП к другой. Причем новая программа должна быть более насыщена эмпирическими данными.
Пол Фейерабенд (1924—1994) высказал следующие идеи: методологический анархизм и правило anything goes, антиавторитаризм, принцип пролиферации теорий, идею несоизмеримости научных теорий.
Основной принцип Фейерабенда — «anything goes» (всё дозволено). Познание социально детерминировано, критерии рациональности, истины и объективности относительны. Значение научного метода сильно преувеличено: ученые часто действуют иррационально. Следовательно, пригоден любой способ действия, могущий привести к цели (anything goes — все пойдет).
Следовательно, уместен антиавторитаризм: не существует абсолютного объективного критерия истинности в познании. Требование логической преемственности неразумно: оно сохраняет более старую, а не лучшую теорию. Новые гипотезы никогда не согласуются со всеми известными фактами: факты формируются старой идеологией.
Принцип пролиферации (умножения, увеличения числа) теорий: новые теории не выводятся из старых, а противоречат им. Движение науки не поступательно, оно осуществляется благодаря борьбе альтернатив. Следовательно, для объективного познания необходимо разнообразие мнений. Вера в объективную истину ведет к авторитаризму в науке.
Идея несоизмеримости научных теорий: не существует универсального научного языка, в разное время различные ученые вкладывают различный смысл в одни и те же термины.
Рациональность -- тип мышления и знания, который обладает следующими свойствами: языковая выразительность; определенность понятий; системность; обоснованность; ориентация на образец; открытость для критики; способность к самосовершенствованию.
Понятия рациональность и научная рациональность имеют несовпадающие значения. Необходимо отметить, что многие виды знания: обыденное, философское, религиозное, правовое являются рациональными, но не являются научными. Каждому из этих видов присуща своя собственная «логика» эволюции и каждый может взаимодействовать с другими видами. Сама наука как вид рациональности так же неоднородна, поскольку для разных исторических эпох характерны свои исторические типы рациональности. Выделяют: классический, неклассический и постнеклассический тип научной рациональности. Классический тип научной рациональности (XVII - первая половина XIX в.в.),
1 этап -- древняя Греция -- возникновение науки в социуме с провозглашением геометрии, как науки об измерении земли.
- работали не с реальными предметами, не с эмпирическим объектом, а с математическими моделями -- абстракциями.
- из всех понятий выводились аксиома и опираясь на них с помощью логического обоснования выводили новые понятия.
2 этап -- Средневековая европейская наука -- наука превратилась в служанку богословия. Противоборство между номиналистами (единичные вещи) и реалистами (универсальные вещи).
Теория -- высшая форма организации НЗ, обеспечивающая целостное представление о закономерностях представлений о развитии того или иного уровня знания. Теория должна: представлять к-л. область действительности, объяснять факты на основе найденных закономерностей, расширять сферу познания.
Теория (по форме) -- это система логически взаимосвязанных утверждений. В теории также используется специфический категориальный аппарат, система принципов и законов. Развитая теория открыта для описания, интерпретации и объяснения новых фактов.
Различают следующие теории:
1) Гипотетико-дедуктивные
2) Описательные теории (не требует иерархической подчиненности элементов, но предполагается согласованность с эмпирическим базисом).
3) Индуктивно-дедуктивные
4) Формализованные (сложный математический аппарат)
Основные компоненты теории:
Техн. теория имеет ту же стр-ру, что и естественнонаучная (ЕН). Можно выделять свои модели, мат. аппараты, теор. схемы. Техн. теория была введена ак. Степиным (ранее вместо этого использовались частные и общие законы Н). В ЕН под теор. схемой понимают совокупность объектов, к-ые описывают природный процесс. Они могут участвовать в мысленных процессах, над ними осущ-ся мат. операции (мысленный опыт Галилео о законе свободного падения тел (наклонная плоскость - идеальный объект, т.к. не было трения), осущ-ся разложение сил и строится уравнение. Частная теор. схема— островки теор. знания(изохронное качание маятника) выводились в класс. Знании с помощью индукции путем обобщения опытных данных.
Употребление техники и технологии. Речь идет о двойной логике использования техники и технологии. Она обусловлена тем, что технические сооружения и технологии -- это артефакты, т.е. искусственные образования, а с другой стороны, техника и технология представляют собой продолжение природы и их можно рассматривать, как естественно-искусственные феномены.
Классические технические науки на базовые ест.- науч. теории. Возникли как результат приложения теории к инженерной деятельности. (практика) Эксперимент заменяется на инжен. деят-ть. В технологии знании можно выделить 2 уровня: эмпирический и теортический эмпир. знания( эксперементальные) вырабатываются на стадии пуска и эксплуатации технического устройства. Она тесно связана с инженерной деятельностью. Через инж. деят-ть взаимодейст. с технической теорией. К эмпир. знаниям относ-ся описания различных конструктивных узлов, расчеты отд. элементов; практика- методические рекомендации.
Научно --тех. дисцип. -- как деятельность, направлены на применение технических знаний в инж. деятельности.
Диофантовы уравнения (они же — уравнения в целых числах) встречаются в последней задаче из профильного ЕГЭ по математике. Но куда важнее другое: методы их решений представляют самостоятельную ценность. Поэтому решению диофантовых уравнений будет посвящена целая серия видюшек.
Сегодня мы разберём лишь самые простые уравнения — их можно назвать линейными. Но уже на их примере мы узнаем, что такое вычеты и как они помогают решать подобные задачи.
В этом видео мы разберём довольно простую, но очень показательную задачу 19 — в ней по сути собрано всё, что приходится применять для грамотного обоснования ответов, особенно в пунктах б) и в). Многие преобразования в алгебре мы выполняем "на автомате", даже не задумываясь, как они влияют на ответ. Заметить такие преобразования и сделать из них правильные выводы — ключевой навык для решения задач 19 в ЕГЭ.:)
Первый и самый главный урок, посвящённый решению задач 19 из ЕГЭ по математике. Разбираем правила работы с арифметическими прогрессиями, представление чисел в позиционной системе счисления и, наконец, самое противное — метод перебора вариантов для решения диофантовых уравнний.:)
Страница урока на сайте:
https://www.berdov.com/ege/teo....riya-chisel/pozicion
Можно выделить два крайних подхода к рассмотрению творчества:
— творчество абсолютно стихийно, неуправляемо, зависит от сил. неподвластных человеку;
— творчество можно программировать, им можно сознательно управлять в целях повышения его эффективности.
В реальности в творческой деятельности присутствуют, наверное, обе составляющие в тех или иных пропорциях. С одной стороны, есть элемент непредсказуемости, спонтанности, а с другой стороны, человек может сознательно готовить себя к творческой деятельности, повышать ее эффективность за счет работы над собой.
Обычно творчество различают в зависимости от сферы деятельности человека:
— научное
— техническое
— художественное
— декоративно-прикладное
— религиозное
— мистическое
— обыденно-практическое и пр.
Техническое творчество на нынешнем этапе его развития тесно связано с особенностями современной инженерной деятельности.