- Development
- Business
- It and software
- Personal development
- Design
- Marketing
- Beauty
- Photography and video
- Health and sport
- Music
- Education
- Test prep
- Languages
- Work on the computer
- Construction and repair
- Cooking
- Agriculture
- Freelance
- Traffic rules and driving
- Games
- School education
- Professional orientation
- Sewing and leather work
- Handiwork
- Stone and carpentry
- Interview
- Fishing and hunting
- Countries
Обобщённая гипербола в ДВИ МГУ
Продолжаем работать с обобщёнными гиперболами. Рассмотрим задачу с параметром из ДВИ МГУ. Этот урок — один из первых, относящихся к уровню сложности "Эксперт". Действительно сложная и красивая задача, для решения которой даже подготовленному ученику придётся напрячь мозги.
Основные идеи, которые мы рассмотрим:
1. Как ведёт себя линейный и квадратичный многочлен от двух переменных при приближении к своим нулям.
2. Когда имеет смысл искать обобщённые гиперболы и как это делать;
3. При каких условиях можно переходить от неравенства к уравнению. И как не потерять корни;
4. Мысли на будущее: метод областей как обобщение метода интервалов.:)
00:03 Знаки линейного многочлена на координатной плоскости
04:13 Знаки квадратного многочлена. Происхождение гиперболы
06:44 Простой критерий: когда стоит искать гиперболу
00:11 Задача с параметром из ДВИ МГУ
49:19 Замечание про метод областей