Следующий

Трапеция и вписанная окружность

22 Просмотры· 03/25/20
Павел Бердов
Павел Бердов
Подписчики
0

Продолжаем изучать трапеции. В прошлый раз мы обсуждали диагонали и свойства треугольников, образующихся при пересечении этих диагоналей. Сегодня рассмотрим трапеции специального вида — в которые можно вписать окружность.

Главный факт: если в трапецию можно вписать окружность, то сумма оснований равна сумме боковых сторон. Кроме того, центр вписанной окружности лежит на средней линии этой трапеции, а сама средняя линия разбивает исходную трапецию на две маленьких с равными высотами, совпадающими с радиусом вписанной окружности.

Казалось бы, мелкие и очевидные факты. Но сегодня вы узнаете, насколько эти факты способны упростить решение многих геометрических задач.

00:23 Основные свойства описанной трапеции
01:21 Задача 1: сравнение площадей и доказательство свойств
10:40 Где можно применять эти свойства
11:44 Задача 2: построение вспомогательной трапеции
18:45 Свойства равнобедренной трапеции
19:18 Задача 3: равнобедренная трапеция с привлечением тригонометрии
30:03 Заключение: самое главное, что надо знать

Показать больше

 0 Комментарии sort   Сортировать


Следующий