Следующий

Метод математической индукции

5 Просмотры· 03/25/20
Павел Бердов
Павел Бердов
Подписчики
0

Метод математической индукции — это приём доказательства утверждений, зависящих от натурального параметра. Он состоит из трёх шагов:
1. Доказать утверждение для конкретных n. Например, для n = 1 или n = 2;
2. Предположить, что утверждение верно для n = k;
3. На основе этого предположения доказать, что утверждение верно для n = k + 1.

Если все три шага выполнены, то исходное утверждение будет доказано для всех натуральных чисел n. Это позволяет доказывать сложные и нестандартные формулы.

Сегодня мы будем тренироваться в применении метода мат. индукции на четырёх задачах: два равенства и два неравенства. Заодно повторим несколько важных фактов из теории тождеств и, собственно, неравенств.

00:00 Метод математической индукции на примере простой задачи
04:16 Более сложная задача, анализ формулы последнего слагаемого
08:17 Доказательство рациональных неравенств (больная тема для многих)
12:49 Доказательство иррациональных неравенств (вспоминаем квадратные корни)

Показать больше

 0 Комментарии sort   Сортировать


Следующий