- Разработка
- Бизнес
- ИТ и ПО
- Личностный рост
- Дизайн
- Маркетинг
- Красота
- Фотография и видео
- Здоровье и спорт
- Музыка
- Образование
- Подготовка к экзаменам
- Языки
- Работа на компьютере
- Строительство и ремонт
- Кулинария
- Сельское хозяйство
- Фриланс
- ПДД и вождение
- Игры
- Школьное образование
- Профессиональная ориентация
- Шитье и кожевенное дело
- Рукоделие
- Каменные и столярные работы
- Собеседование
- Рыбалка и охота
- Страны
Трапеция и вписанная окружность
Продолжаем изучать трапеции. В прошлый раз мы обсуждали диагонали и свойства треугольников, образующихся при пересечении этих диагоналей. Сегодня рассмотрим трапеции специального вида — в которые можно вписать окружность.
Главный факт: если в трапецию можно вписать окружность, то сумма оснований равна сумме боковых сторон. Кроме того, центр вписанной окружности лежит на средней линии этой трапеции, а сама средняя линия разбивает исходную трапецию на две маленьких с равными высотами, совпадающими с радиусом вписанной окружности.
Казалось бы, мелкие и очевидные факты. Но сегодня вы узнаете, насколько эти факты способны упростить решение многих геометрических задач.
00:23 Основные свойства описанной трапеции
01:21 Задача 1: сравнение площадей и доказательство свойств
10:40 Где можно применять эти свойства
11:44 Задача 2: построение вспомогательной трапеции
18:45 Свойства равнобедренной трапеции
19:18 Задача 3: равнобедренная трапеция с привлечением тригонометрии
30:03 Заключение: самое главное, что надо знать